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Outline

 Basics of hypothesis testing.
— Formulation of statistical hypotheses.
— P-value & level of significance of a test.
— Power and sample size calculations.

« Comparison of two or more groups.
— Parametric procedures.
— Nonparametric procedures.

— Resampling based methods: Permutation and Bootstrap
procedures.

* Multiple testing in high dimensional data.
— Types of error rates.
— Two important procedures for high dimensional data.



Basics of hypothesis testing



Formulation of hXEo’rheses

* Null hypothesis H

— Hypothesis of no difference or no association.

* Alternative hypothesis H,

— Hypothesis the researcher is trying to prove.



The basic idea

Assuming that the null hypothesis is true, is there
“sufficient” evidence in the data to reject the null
hypothesis in favor of the alternative hypothesis?

Example:
— Defendant is guilty (test substance is toxic).

— Defendant is innocent (test substance is not toxic).

Which is the null and which is the alternative
hypothesis from a jury's (foxicologist's) point of
view?



The basic idea

Null hypothesis: Defendant is innocent.

(No difference between the test substance and the
vehicle control).

Alternative hypothesis: Defendant is guilty.

(There is difference between the test substance
and the vehicle control).



The basic idea

Assuming that the defendant is innocent

(there is no difference between the test substance
and the vehicle control), how likely are we to see the
following?

« Defendant’s finger prints at the crime scene
(half the treated animals developed tumors).

* An eye witness who saw the defendant at the crime
scene (none of the control animals developed
tumors).

Etc.



Caution

The following formulation of hypotheses is not
valid.

Ho: There is a higher tumor incidence in the test

chemical group than in the vehicle control group.

H, : There is no difference in tumor incidence
between the test chemical and vehicle control.



The p-value

Calculate the probability of outcomes as extreme as

the ones observed - assuming the null hypothesis is
True.

This is known as the p-value!
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The p-value

Calculate the probability of outcomes as extreme as
the ones observed - assuming the null hypothesis is
True.

This is known as the p-value!

If p-value is small then it implies that you observed an
event that is very unlikely to occur had the null
hypothesis been truel

)

Reject the null hypothesis if the p-value is "small”.
The defendant is guilty (fest substance is foxic)
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Level of significance

* How "small” is small? It is subjectivel

— This threshold is known as the "level of significance”
against the null hypothesis. Denoted by ¢

— Typically oo =0.05

— Thus you may reject the null hypothesis if the
p-value < &
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Interpretation

What should be the conclusion when the p-value is
“large"?

Should it be "Accept the null hypothesis"? (i.e.
defendant innocent).

No! Wrong conclusion.

Correct conclusion: We conclude that there is not
sufficient evidence in the data to reject the null
hypothesis at the specified level of significance!
(fail to reject the null that the defendant is
innocent)
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Caution

In standard statistical framework you can never
prove the null hypothesis since you are performing
your statistical test assuming the null hypothesis is
truel

You need to state the hypothesis you desire to prove
as the alternative hypothesis. If the evidence is
sufficiently strong against the null hypothesis you can
reject the null in favor of the alternative hypothesis.
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Bioequivalence Test

What if the hypothesis of interest is the equivalence
of means of two populations?

e.g., Test the hypothesis that the mean expression of
a gene is same between normal and tumor tissue

We can formulate the hypothesis as follows:

H,: Mean expressions are not equivalent
M — Uy < —00rHy: iy —pp =240

H,: Mean expressions are equivalent

where [—6 , +6]is the allowable range for equivalence



Bioequivalence Test

Restate the hypotheses is as the following pair of
hypotheses and test each of them.:

Ho1ipy =y < =0
Hop:py — 2 > =0
and
Hop: py — iy 2 +0
Hop: py —pp < +0

Conclude equivalence if and only if both Hy, and H,, were
rejected.
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Formulation of alternative hypothesis

Two common types of alternative hypothesis.

Two-sided hypothesis

H_ - Mean of the treatment group is different
8" from the that of the vehicle control.

One-sided hypothesis

H_ - Mean of the treatment group is larger than
a° that of the vehicle control.
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Frequency

More precisely ...

Ho l ity =145
H_ = 41, (Two-sided)

Acceptance and rejection regions

t,_ 1 distribution = distributicn of ¢ under H,

/
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Acceptance region
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Frequency

More precisely ...

Ho - an = 107
H_:u < u, (One-sided)

Acceptance and rejection regions

Rejection region

jAcceptance region

ty, _y distribution = distribution of ¢ under H;

/
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Types of errors

All inferences are based on a sample of data (or
evidence).

Consequently we are likely to make errors in our
inferences.
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Types of errors

 False L)osi‘rive = Falsely rejecting the null
hypothesis (Type I error).

— Declaring the defendant to be guilty when the person is
Innocent.

— Declaring a chemical to be toxic when it is not really
different from the vehicle control.

* False negative = Failing to reject the null when the
alternative hypothesis is true (Type II error).

— Failing to declare a guilty person to be guilty.
— Failing to declare a toxic chemical to be toxic.
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Types of errors

State of Reality

Ho True Hy False
Do not Correct Error in
Decision Made prgicct H Decision Decision
Based on J 0 (Type II error)
Sample Data
According to Error in Power
Rule Reject H, Decision

(Type I el"l"or') Pr(reject Hy|H,)



Tllustration of Power

H=H <M

Power=
Pr(reject HylH;)

Frequency

Dyistribution of X

under H,
N(py, o%/n)

.........

--------

Distribution of X

under H,
N(pq, o4/n)

Acceptanced
region
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Designing studies

 Inaddition to the underlying science, several
factors play an important role in conducting good
experiments/studies.

— Randomization
 To avoid any systematic bias.
— Replication (loosely speaking "sample size")

* To get a good estimate of the underlying variability in
the data.

« Impacts the power of a study.
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_— o%(z1-8 + 21-&-;2)2

Power and sample size (1o — pn)?

Power: Pr'obabili’r¥ of rejecting the null hypothesis
when the alternative hypothesis is true.

Some factors that impact sample size required in an
experiment:

1. Power: n { with increase in the desired power.

2. Level of significance: n | with increase in the
desired the level of significance.

3. Variability in the data: n fwith increase in
variability in the data.
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o’ (El—ﬁ + Zl—r:ujﬁ)z

Power and sample size "=——, —.

. Effect size: n| with increase in the desired
effect size.

. Experimental design.

. Type of alternative hypothesis (Very important
when designing your studyl!).

. Choice of the statistical test.
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Factors influencing sample size calculations
- An illustration

Sample size calculation for a power of 80% in a two-
sample t-test with a 5% level of significance.

Coefficient
of variation One sided Two sided
(CV) Effect size alternative alternative
0.5 1.5 28 34
0.5 2 8 12
1 1.5 102 128
1 2 28 34
1.5 1.5 224 286
1.5 2 58 74
1.5 3 16 20

CV= Standard deviation/Mean



Check list for samEle size calculation

* Areyou interested in one-sided or two-sided
hypothesis?

— In case you want to compare more than 2 groups - talk to
a Biostatistician!

« Determine the effect size you are hoping to
detect. Choose a reasonable/realistic effect size.

— Too small would result in a very large sample size!

— Too large may result in an unrealistically small sample
size and you actually may not have good power for a
reasonable effect size.
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Check list for sample size calculation

« Obtain an estimate of the anticipated variability in
the data.

— Always challen?ing since you have not done the
experiment yeft!

Some tips you can use:
1. Pilot studies conducted in the past.
2. Similar experiments/studies published in the literature.

3. Guess a plausible range of the data and divide by 4. This
migh’r provide an estimate under the assumption that the
data are likely to be normally distributed.
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Comparison of two or more groups...
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Three classes of methods

A. Parametric methods.

— Underlying probability distribution is known (e.g. normally
distributed data).

B. Nonparametric methods (Distribution free methods).
— Underlying probability distribution is not known.

C. Re-sampling based methods (Useful for bioinformatics).

— Underlying probability distribution is not necessarily
known.

— Some of the resampling methods are more flexible than
the standard nonparametric methods.
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Parametric methods

31



Example 1

« Consider an assay resulting in the following data:

2.73
1.57
1.02

1.6
0.41
3.44

o O A W=

* Question: Is the mean of the treatment group significantly
different from the mean of the control?

2.04
7.39
4.37
6.53
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"Typical” strategy - Parametric procedure

« Compute:
— the sample means of the two groups. “
— the sample standard deviations. Control 180 111

“ " o Treatment 5.08 2.39
 "Pooled t-test” statistic:

o (=%
1 1 2 2
S pooled o S pooled = (= D)Si + Ny = )3
1 2 poole N +No -2
e P-value

33



Back o Example 1

e P-value =0.0176

« Conclusion: The result is significant at 5% level of
significance. Thus the mean of treatment group is
significantly different from the mean of the
control group at 5% level of significance.

* Question: Is this conclusion valid?

34



When is the pooled
t-test valid?

35



Assumptions made in pooled t-test

1*. Samples within each group are a simple random

sample.

— Avoids any systematic bias in your samples.

— Observations are independent.

2*.Samples between groups are independent.

— e.g. not repeated measures.
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Assumptions made in pooled t-test

3*.Data within each group are approximately
normally distribufed!

— Not a critical assumption if the sample sizes
are “large” or if the distributions are
approximately symmetric.

4*. The Fopula’rion variance of the two groups is
same! ,

01 =073
Known as homoscedasticity (or variances are
homogeneous).
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Questions

How do we detect if of =05 ?

Known as heteroscedasticity (or heterogeneous)
variances.

If we conclude heteroscedasticity then how do
we compare the means?

38



Methods for detecting heteroscedasticity

1. Formal statistical test (an F-test).
— The data need to be normally distributed.

2. Graphical method using residuals.

Replicate Control residual | Trt. data | Trt. residual
data

1 2.73 273 -1.80 2.04 2.04 - 508
2 157 157 - 1.80 7.39 7.39 - 5.08
3 1.02 1.02 - 1.80 437 437 - 5.08
4 1.6 1.60 - 1.80 6.53 6.53 - 5.08
5 0.41 0.41-1.80

6

3.44 3.44 - 1.80



Graphical method using residuals

Replicate | Control Treatment
residual residual

1
2
3
4
5
6

0.93 -3.04
-0.23 2.31
-0.78 -0.71
-0.20 1.45
-1.39
1.64

40



Residual plot to detect heteroscedasticity

Residuals

Control Treatment
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Conclusion?

« Even though the two-sided P-value (0.0176) based
on the pooled t-test appears to be significant, this
conclusion may not be valid since the two groups
appear to have different variances.
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Some strategies when the
pooled t-test is not appropriate
(Known as the Behrens-Fisher problem)
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Welch's and other approximations
(available in some standard packages)

The t-statistic is different from the pooled

t-test: (% — %)

2 2
S S
N No

The degrees of freedom are calculated from
the data and is NOT n, +n, -2,

44



Back to the Example 1

» Compute:

“Unequal variance t-test” statistic:

Mean | Standard
i (X1 —X5) o7 Deviation
\/ h 32

nl n Control

Treatment 5.08 2.39

* Welch's P-value using EXCEL = 0.0640 - NOT

significant at 5% level of significance!
45



Effect of unequal variance
on the Pooled t-test

A. If the two groups have the same sample size then the
pooled t-test should be okay in general.

B. If 012 < 522 and Ny > Ny then pooled t-test may have.
higher false positive rate than the desired nominal level.

—  Thus you can't be too sure about the significant result
observed in the data.

c. If 0'12 <o 22 and M < N3 then pooled t-test may have.
smaller false positive rate than the desired nominal level.

—  Hence may result in loss of power.
46



Question

Why not use the unequal variance t-test for all
data sets since it requires one less assumption?

Answer: If the two populations have equal
variances then the unequal variance t-test will
be less powerful than the pooled t-test.
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A simple alternative strategy

Perform transformations to data and then apply
pooled t-test.

Log-transformation -perhaps the data are log-normally
distributed.
Y — log(Y +c¢)

More generally perform Box-Cox power transformations.

IR (Y +c)d

Y d=0

48



B. Nonparametric methodology
- Useful when distribution of the data within
each group is unknown or non-normall

49



Wilcoxon Rank Sum test

Control: 2.73,157,1.02,1.60,0.41,3.44
Treatment: 2.04,7.39,4.37, 6.53

Mix the two samples and rank from smallest to largest
 Combined data:

0.41,1.02,157,160,2.04,2.73,3.44,4.37,6.53,7.39
e Rank:

1,2,3,4,5,6,7,8,9,10
Rank data:

e Control:1,2,3,4,6,7
e Treatment: 5, 8,9, 10
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Wilcoxon Rank Sum test

Rank data:

e Control:1,2,3,4,6,7 Sum=23
e Treatment: b, 8,9, 10 Sum=32

If the sum of the Control group is "unusually” small or
large, you reject the null hypothesis that the two groups
have same distribution. The critical values are obtained by

Wilcoxon rank sum test tables or normal approximation (if the
sample size is large enough).

P-value is 0.0428

51



What assumptions are required for
Wilcoxon Rank Sum test?
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Assumptions made in pooled t-test

1*. Samples within each group are a simple random

sample.

— Avoids any systematic bias in your samples.

— Observations are independent.

2*.Samples between groups are independent.

— e.g. not repeated measures.
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Wilcoxon Rank Sum test

Assumptions made in peeled-+test

/' 1*. Samples within each group are a simple random
sample.

— Avoids any systematic bias in your samples.

— Observations are independent.

W 2*.Samples between groups are independent.

— e.g. not repeated measures.
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Assumptions made in pooled t-test

3*.Data within each group are approximately
normally distribufed!

— Not a critical assumption if the sample sizes
are “large” or if the distributions are
approximately symmetric.

4*. The Fopula’rion variance of the two groups is
same!
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Wilcoxon Rank Sum test

Assumptions made in peeled+test

3*.Dataw+ljn each group are approximetely
normally disTskufed!

. Nok< e,c;jed! |
— Not a criticglesSump™Qn if the sample sizes
are "lagae*or if the distThutions are

gpproximately symmetric.

4*. The Fopula’rion variance of the two groups is
same!
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Wilcoxon Rank Sum test

Assumptions made in peeled+test

3*.Dataw+ljn each group are approximetely
normally disTskufed!

. Nok< e,c;jed! |
— Not a criticglesSump™Qn if the sample sizes
are "lagae*or if the distThutions are

gpproximately symmetric.

3*\(‘. The Fopula’rion variance of the two groups is
same!

5/



Some comments

e Median test is another nonparametric test
commonly used - compare the medians.

« Wilcoxon rank sum test is also the Mann-Whitney
test. Some times these tests are also known as
Mann-Whitney-Wilcoxon test.

« Wilcoxon rank sum test is also a special case of
Kruskal-Wallis test.
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C. Resampling methods

59



Two general schemes

Methods that enable us to derive the distribution
of a test statistic under the null hypothesis.

— Permutation:

« Exchange labels on data points: random
draws without replacement from the mixed
sample.

— Bootstrap (numerous variations exist):

* Bootstrap -1: Random draws with
replacement from the mixed sample.

e Bootstrap -2: Bootstrap the residuals.

60



Permutation test

1. Compute the test statistic T using the given data.
2. Combine the two sets of samples into one (n1+n2).

e  Assign a random sample of nl observations (without
replacement) to the Control group. The remaining n2 are
assigned to the Treatment group.

3. Construct the test statistic using the above null data.
Denote it by T*. [center at the difference of the
sample means]

4. Repeat the above process a large number of times.

5. Determine the proportion of times T* > |T|. Multiply
by 2 to get a p-value for the two-sided test.
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Example: Permutation test

Ref: http://faculty.washington.edu/kenrice/sisg/SISG-08-06.pdf

Generate date: 10 exposed subjects and 10 unexposed
subjects. 1) y, =p, =0;

2)u,=0and p, =1

> set.seed(11)

> exposure<-rep(c(0,1), c(10,10))

> null.y<-rnorm(20)

> alt.y<-rnorm(20, mean=exposure)

> null.diff<-mean(null.y[exposure==1])-
mean(null.y[exposure==0])

> alt.diff<-mean(alt.y[exposure==1])-mean(alt.y[exposure==0])
> null.diff [1]

-0.2390708
> alt.diff [1]

0.9939836
62



Example: Permutation test

Generate permutations:
one.test <- function(x,y) {
xstar<-sample(x)
mean(y[xstar==1])-mean(y[xstar==0]) }

many.truenull <- replicate(1000, one.test(exposure, null.y))
many.falsenull <- replicate(1000, one.test(exposure, alt.y))

sample(x): generate random permutation

> exposure

[1]0000000000111111211111
> sample(exposure)
[1]00101000110101111001
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Example: Permutation test

R codes for plotting

> hist(many.truenull)

> abline(v=null.diff, lwd=2, col="purple")

> mean(abs(many.truenull) > abs(null.diff))
[1] 0.52

> hist(many.falsenull)

> abline(v=alt.diff, Iwd=2, col="purple")

> mean(abs(many.falsenull)

> abs(alt.diff))

[1] 0.006
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Frequency

Example: Permutation test

Mo =1y =0 1, =0 and p, =1
Histogram of many.truenull Histogram of many.falsenull
L]
C’J J—
o
L
O ni
= 7 5
- o
2 - 5 E-
o
3 - T8
o [ ] 1 o [
| ! ! ! ! | I l I I I
10 05 00 05 10 15 15 10 05 00 05 10
many_truenull

many_falsenull

Percent of times |permuted mean| > |observed mean:

0.52 0.006
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Bootstrap -1

1. Compute the test statistic T using the given data.
2. Combine the two sets of samples into one (n1+n2).

e  Assign a random sample of nl observations (with
replacement) to the Control group and a random sample of
n2 (with replacement) to the Treatment group.

3. Construct the test statistic using the above null data.
Denote it by T*. [center at the difference of the
sample means]

4. Repeat the above process a large number of times.

5. Determine the proportion of times T* > |T|. Multiply
by 2 o get a p-value for the two-sided test.
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Comments on Permutation and Bootstrap -1

Lf the sample sizes are large then the p-values
from the two methods are approximately same.

Both methods make same assumptions as the
Wilcoxon rank sum test does.

Neither method is suitable if the two groups have
different variances.
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Back to example 1

The bootstrap p-value using 10,000 bootstrap
samples = 0.0610.

Conclusion: Do not reject the null that the two
groups have same mean at 5% level of significance.
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More than two treatment groups... ANOVA
Interval scale data

69



Three classes of methods

A.Parametric methods.

B. Nonparametric methods (Distribution free
methods).

C. Re-sampling based methods.

70



Parametric methods

71



The global/complete null hypothesis

Ho oy =1, =...= 1,
(All group means are equal)

H_ : At least one group mean is
different from others.
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Example 2

« Consider an assay resulting in the following data:

10.919 10.936 11.636 2.756
10.880 8.933 12.051 8.140
10.412 10.691 11.302 8.987
10.838 9.392 14.009 11.523
10.491 9.349 12.771 2.740
9.109 8.869 14,239 11.372

o Ol WN -



The Analysis of Variance (ANOVA) -
the basic idea

Compute the means of the data from each group.

" Control [Dose 1| bose 2 | bose 3

Sample Mean 10.441 9.695 12.668 7.586

Basic idea of F-test:

— If sample means of the four groups are "far
apart” relative to the within group variation
then you may want to reject the null hypothesis.

4



Analysis of Variance - More precisely

e The F-test used in ANOVA:

Mean variability between groups
Mean variability within groups

« The numerator degrees of freedom =
number of groups -1

« The denominator degrees of freedom =

total sample size - number of groups
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Back to Example 2

Means and SD for the data are:

| Control | Dose 1_|Dose 2| Dose 3 _

Mean 10.441 9.695 12.668 7.586
Standard
Deviation 0.687 0.895 1.232 3.973

The P-value from F-test = 0.0055.

Is this p-value valid? Verify the assumptions similar to those
described for the t-test.
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What can I infer?

* The mean of at least one of the four groups is
significantly different from the others at level of
significance of 0.01 because the p-value is 0.0055.

 Can anything be said about which mean is different
or how the means differ from each other?

I



Post-hoc Analysis

A researcher is often interested in:

— Pairwise comparisons of treatment groups vs. control group.
— All pairwise comparisons.

— Trend test to detect dose-response.

Post-hoc analysis can be used

/8



Post-hoc multiple comparisons

Table 2. Features of the most commonly used post-hoc tests (modified from Abacus Concepts 1993
and Armstrong et al., 2000)

Method Equal NF Normality Use Error control Protection
Fisher PLSD Yes Yes Yes All Most sensitive to Type 1
Tukey-Kramer HSD No Yes Yes All Less sensitive to Type 1
Spjotvoll-Stoline No Yes Yes All As Tukey-Kramer
Student-Newman Keuls (SNK) Yes Yes Yes All Sensitive to Type 2
Tukey-Compromise No Yes Yes All Average of Tukey and SNK
Duncan’s Multiple Range No Yes Yes All More sensitive to Type 1 than SNK
Scheffé’s S Yes No No All Most conservative
Games/Howell Yes No No All More conservative than majority
Dunnett’s test No No No T/C More conservative than majority
Bonferroni No Yes Yes All, TC Conservative

Abbreviations: PLSD = Protected least significant difference, HSD = Honestly significant difference.

T = treatment groups, C = Control group, Column 2 indicates whether equal numbers of replicates (N) in each
treatment group are required or whether the method can be applied to cases with unequal ‘N’. Column 3
indicates whether a significant between treatments F ratio is required before post-hoc tests can be applied and
columns 4 and 5 whether the method assumes equal variances in the different treatments and normality of errors
respectively. The final column indicates the relative degree of protection against type 1 and type 2 errors.

http://eprints.aston.ac.uk/9317/1/Statnote_6.pdf 7



Formulation of statistical hypothesis!

When a researcher knows what he/she wants to
compare the F-test may not be the most

appropriate test.
Alternative more powerful methods of analysis are

available depending upon the scientific question of
iIntferest,
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An example of power comparisons

in a dose-resEonse s’rudx Sa simulated da’raz

— Level of significance = 0.05

— Number of dose groups =4

— Sample size at each dose = 6

— Standard deviation of each group =1

Mean patterns |Power using Power using
F-test trend test

(1,125,15,1.75) 0.157 0.355
1,2,2,2) 0.335 0.547
(1,2,25,3) 0.795 0.958

« Substantial gains in power by testing for trend rather than
using the standard ANOVA based F-test.
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Formulation of statistical hypothesis!

—

Formulation of the statistical hypothesis is a very
important step before performing any analysis of data.
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Multiple testing in genomics and other high
dimensional data analysis

83



Discoveries in microarray data and

other high dimensional data

« Consider a microarray experiment with the following
experimental design:

— Control group - 6 animals
— Treatment group - 6 animals
— Affy chip consisting of m = 45000 probes.

Questions: Identify differentially expressed probes.

 Identify probes that are significantly up regulated in
the treatment group.

 Identify probes that are significantly down regulated in
the treatment group.

84



Discoveries in high dimensional data

e« Problem of interest:

— Compare two (or more) groups on the basis of m = 45000
probes! Thus 45000 statistical tests are being performed!

« False positive rate accumulates

Number of | Probability falsely rejecting at

probes (m) least one null hypothesis
(assuming probes are
independent)
1 0.05
2 0.10
3 0.14
5 0.23
45000 1
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Two commonly used error rates

* Family Wise Error Rate (FWER).

— Probability of falsely rejecting at least one null
hypothesis among all hypotheses tested.

« False Discovery Rate (FDR).

— The expected proportion of false discoveries
among all discoveries made.
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Classification of m hypothesis tests

Null Alternative
hypothesis is hypothesis is Total
True True
Declared significant V S R
Declared non-
o U T m-R
significant
Total mo m-mo m

» FWER = Pr(V>=1) or equiva

ently, FWER = 1- Pr(V = 0)
> FDR = E (V/R) = E(V/(V + S5))

87




Control of FWER ...

88



Controlling FWER

Bonferroni method

Suppose the microarray consists of "m" probes on the chip.
1. Compute the standard p-value for each probe.

2. Multiply the p-value by "m". If the result is more than 1 then
set it to 1. This is called the Bonferroni adjusted p-value.

Decision rule:
For a given probe if its Bonferroni adjusted p-value is less than

0.05 then you conclude that it is differentially expressed
at FWER of 0.05.

This procedure can be applied very broadly, but is conservative.

89



Control of FDR ...

90



Controlling FDR

Benjamini-Hochberg procedure (Step-up procedure)

Suppose there are "m" probes on the microarray.

1. Compute p-value for each probe.

2. Sort probes by their p-values. py < ppy <...< pm)
o

3. Let aGy =—
m

4. Identify the largest index r such that

Piry Sy and Perygy > Ay

91



BH procedure

Reject all null hypotheses H,,H,, ... H,
corresponding to the p-values Pgy: P2y Pery

92



An illustration

» Suppose we have a microarray containing 15 probes.

» The p-values based on standard t-test are given in
the table.
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Probel
Probe?2
Probe3
Probe4
Probeb
Probe6
Probe7
Probe8
Probe9
Probel0
Probell
Probel?2
Probel3
Probel4
Probel5

0.0043
0.0037
0.0008
0.0001
0.0042
0.3098
0.1112
0.1712
0.9676
0.715
0.0216
0.5526
0.7577
0.023
0.1545



Probe | Sorted P- § Bonferroni Benjamini-Hochberg
value p-value threshold

Probe4

Probe3
Probe2

Probeb
Probel
Probell

Probel4
Probe7

Probelb
Probe8
Probeé6

Probel2
ProbelO

Probel3
Probe9

0.0001

0.0008
0.0037

0.0042
0.0043
0.0216

0.0015
0.012

0.023
0.1112

0.1545
0.1712
0.3098

0.5526
0.715

0.7577
0.9676

0.0555

0.063
0.0645
0.324

0.345
1

[ W QY — =t =t =

0.003333

0.006667
0.01

0.013333
0.016667
0.02
0.023333

0.026667

0.03
0.033333
0.036667

0.04
0.043333

0.046667
0.05

I
C((i) = EC(

Here m= 15
a = 0.05
=1, 2, ....15
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Conclusion

« FWER controlling methods (e.g. Bonferroni method)
tend to be more conservative compared to FDR
controlling methods (e.g. BH procedure).

— i.e. fewer number of probes will be selected as significant if
FWER is controlled instead of FDR.
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Questions?



TESTING FOR THE EQUALITY OF TWO
VARIANCES

R, B, DU .2 2
Hy : 07 = o5 versus H, : o7 # o3

F' distribution Let X ~ y7 andY ~ y7 . Assuming X is

mdependent of Y, then
X/d,
Y/ds

- Fdl,dj

where Fy, 4, 1s called the F distribution with degrees of

freedom d; and d>.
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Wilcoxon Rank Sum test- normal approximation
method

R, The sum of the ranks in the first sample. Under H,
(when there are no ties),

ﬂ-ll:ﬂ-l + N2 + 1)
)

—

E(R) =

ﬂ-lﬂ-g(ﬂ-l -+ Tlo + 1)
12

Var(R,) =

(a) Compute
T = [ Ry — G i l)j — %] /\/ﬂ-lﬁ-z (n1 +n2+ 1)

2 12
1f there are no ties

=y

It T > z,_, /9, then reject Hy. Otherwise, accept Hp.

 Calculation of T is more complicated if there are ties 99



Bootstrap - 2: Bootstrap residuals

Basic difference between this method and
Bootstrap-1 method is in Step 3.

- Details omitted.
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Comments on bootstrapping residuals

Strenqgths

Distribution free. The samples can be from any continuous
distribution.

No need to verify if the variances are equal or not.

Since it may not be easy to verify if the variances are equal
or not in a high dimensional data , it is the ideal method for
analyzing large scale genomic data.

This method can be extended to more complex modeling
situations.

Potential weakness

May have a smaller power than the pooled t-test if the data
satisfy the assumptions 3* and 4* required by f-test. 101



—

S~

T, — T

| Equation

~ N(0,1)

\V of/ny + 03 /ny

Two-sample ¢ test for independent samples with unequal

variances (Satterthwaite’s method) Let

d =

T1 — T

T = _ :
V831 + s3/ns

(s1/m1 + s3/n)*

(51/m1)%/(ny — 1) + (55 /n2)%/(ny — 1)

and d” be the nearest integer to d'.

- ITt > tgr —agp Ot < —tgn 1—q 2. then reject Hy;

o
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